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Summary 
 
The Friedmann (1922) equations are a solution for the expansion of the universe from Einstein’s 
general relativity equations as applied to cosmology. The temperature history of the universe is 
reviewed to show how it is believed that the observable universe has expanded by 3000K/2.7K  
~ 1100 since it became transparent to radiation. However, this would have existed ~13.8 billion 
years ago, and the universe should have continued to expand since then, perhaps to a “radius” of 
~14.4 Gpc. In order to back out reasonable values of Hubble’s constant, to compare with verified 
measured values out to a distance of ~3 Gpc from the Sun, the age of the universe must be 
substantially older than current estimates.  
 
The Friedmann Equations 
 
The two Friedmann equations derived from Einstein’s (1917) cosmological equations are 
[Friedmann (1922), Swihart (1968)]: 
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where a single dot over the R is the first derivative, dR/dt; the double dot is the second 
derivative; R is the radius of curvature of space; t time; k either -1, 0, +1 depending on if the 
universe has negative, flat (Euclidean), or positive curvature; c the speed of light; 
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" Einstein’s 
fabricated cosmological constant; G the universal gravitational constant; p pressure; and

! 

"  
average density (including both observed matter as well as dark matter).  
 
The 2nd equation is all that is needed to predict the universe’s expansion versus time, as well as 
its age. Note that the only inputs required are the average density at time t, k, and the 
cosmological “constant”; the other values are physics constants.  
  
The Size of the Universe when it Became Transparent 
 
Equation (2) can be simplified during the time that radiation dominated over matter, since the 
cosmological term is negligible at early times, following similar steps as Weinberg (1972): 
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where ρr is the radiation density. Also, in an adiabatic expansion, the temperature Tr of the 
fireball is inversely proportional to R2 for non-relativistic speeds, but to R for relativistic speeds 
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[Weinberg (1972); Rowan-Robinson (2004)], so in terms of initial conditions, 
 
 R = TiRi/Tr            (4) 
 
At the extreme temperatures of the fireball when radiation dominated over matter, the radiation 
pressure, ρrc2/3, causes the relativistic expansion. If ρr was zero, there would be no expansion of 
space, refuting recent beliefs. Differentiating and substituting into equation (3) results in: 
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The radiation density ρr, following Weinberg (1972) and Berry (1976), is 
 
 ρr = αTr

4/c2              (7)  
 
where the black body constant, α = 4σ/c, and σ is the Stefan-Boltzmann constant. Substituting 
these terms into equation (6) and taking the square root,      
 

  

! 

˙ T 
r

=
dT

r

dt
=

8"G#

3c
2

T
r

3          (8) 

 
Separating variables leads to the following differential equation, 
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The solution for the temperature of the fireball versus time (t) then becomes: 
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Weinberg goes into much more detail involving neutrinos, antineutrinos, electron-positron 
annihilation, relativistic effects, etc, deriving ~30% lower values for Tr  > 5 x109 K. Temperature 
drops to ~1010 K after one second when nucleosynthesis of hydrogen and helium can begin. 
After a few minutes, the temperature will drop to 109 K when nucleosynthesis will start to end, 
leaving nuclei of hydrogen, helium, and a little lithium. There is not enough time available to 
create heavier elements as exists in the center of stars.  And, there is not enough tritium or 
lithium to continue nucleosynthesis at lower temperatures typical of thermonuclear weapons. 
Note that the energy release from nuclear fusion reactions or electromagnetic effects from 
plasmas, that should affect the expansion, are not included in this simplified analysis. 
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The fireball temperature drops to ~4000 K at 1.2x1013 seconds (380,000 yrs). This is the 
approximate temperature when the ionized plasma is no longer ionized and becomes transparent 
to radiation, whereas Rowan-Robinson (2004) and others use 3000 K. This is analogous to the 
ionized plasma that surrounded the Apollo spacecraft during reentry, which prevented 
communication via radio waves until the spacecraft fireball subsided. However, expansion 
speeds are still over an order of magnitude larger than the speed of light long after atoms are 
formed, and rapidly decreasing, violating special relativity but not general relativity.  
 
Since the 2.7 K Cosmic Microwave Background (CMB) is believed to be redshifted from this 
fireball, the radius of the universe should have expanded by 3000 K/2.7 K ~ 1100 at the present 
day (see equation 4). If the current radius of the universe is 4.2 Gpc, then the radius of the CMB 
fireball would be 3.8 Mpc. If the current radius is 14.4 Gpc, then the CMB fireball would have a 
radius of 13 Mpc (or 26 Mpc diameter). For comparison, this latter size is larger than the Virgo 
cluster of galaxies and far larger than our local group of galaxies. 
 
Similarly, by taking the ratio of 109 K/3000 K, we can estimate the universe’s radius when 
nucleosynthesis completed as 4.2 Gpc/3.3x105 = 13 pc at a temperature of 109 K. For 
comparison, there are at least 100 stars within this radius from our Sun, including Arcturus, 
Vega, and Sirius. 
 
It should be noted that the surface of the early, extremely hot fireball was capable of radiating to 
empty space based on its blackbody temperature vs time while it was optically opaque, and the 
cooler fireball (~3000 K) radiated from its entire volume when it became transparent (optically 
thin). The total power emitted from an optically opaque 13 pc (26 pc diameter) fireball at 109 K 
will exceed the power from a 13 Mpc  (26 Mpc diameter) fireball at 4000 or 3000 K by over 10 
orders of magnitude. However, we cannot see this radiation from a unique direction today 
because it would advance ahead of expanding matter.  
 
The early expansion does not drop below light speed until after several hundred million years, 
violating special relativity long after hydrogen and helium are formed. General relativity, 
however, allows expansion speeds exceeding the speed of light – taking the square root of 
equation (2) calculates this speed vs time.  
 
The Expansion of the Universe after it Became Transparent 
 
The universe may be much older than 13.8 billion years, as expanding matter would have to 
average light speed to expand to 13.8 billion light years (4.2 Gpc) in this time. And, if the 
universe’s radius is 14.4 Gpc as it has continued to expand, it would have to exceed three times 
the speed of light to expand this far in 13.8 billion years. In general relativity, this is considered 
acceptable. Let’s explore several approaches to calculate the expansion after the time of last 
scattering (“recombination’). 
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Expansion using Hubble’s Law 
 
If the universe is homogeneous, can Hubble’s Law be used in reverse? If it were possible for an 
observer to be located at the Big Bang location, galaxies would be seen receding at the same 
relative rate as we see from our galaxy. In this case, the expansion is estimated from Hubble’s 
Law, which states that velocity (from redshift measurements) is proportional to distance R 
[Hubble (1929)], assuming we can apply it in either a reverse or forward direction: 
 
v = dR/dt = Ho R            (11) 
 
After separating variables, a simple differential equation is obtained: 
 
dR/R = Ho dt 
 
Ho is approximately a constant, neglecting the slight increase in acceleration measured by Reiss 
et. al. (1998) and Perlmutter et.al. (1999). Therefore, integration yields the time since the 
universe became transparent [Swihart (1968)]: 
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In order for the universe to expand by a ratio of R/Rtransparent = 1100 since the universe became 
transparent, for Ho = 73 km/s/Mpc = 2.36 x 10-18/s, requires an elapsed time of 2.95 x 1018 
seconds, or 94 billion years. The initial 380,000 years when the universe was opaque is 
insignificant in this estimate. An Ho = 67 km/s/Mpc, as estimated by analyzing the structure in 
the CMB and causing the so-called Hubble Tension [Schilling (2019)], would give an age of the 
universe over 100 billion years. Using a range of temperatures from 2000 to 5000 K to estimate 
when the universe became transparent will not change these overall conclusions.  
 
Equation (12) can also be written to calculate radius as a function of time [Weinberg (1972)]: 
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This result shows a radius increasing exponentially with time, and will also result in a straight 
line on semi-log paper. An Ho < 72 km/s/Mpc is needed to keep v < c at 4.2 Gpc.  
 
Starting with zero velocity, a similar result is obtained by using finite difference techniques to 
calculate the expansion of the universe from the Hubble acceleration, a = H2 R, obtained by 
differentiating Hubble’s Law. The relativistic expression for adding velocities must be used in 
this latter analysis. Note that Hubble’s law is being applied in a forward direction from the initial 
fireball, rather than as the distance from our Milky Way galaxy. An initial relativistic velocity, 
from the time the universe becomes transparent, is needed to obtain a universe age of ~14 Gyr, 
and this is the issue with using equation (12) – it assumes zero initial speed from the time when 
the universe became transparent.  
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Expansion using a Friedmann Equation 
 
Equation (11) can actually be derived from equation (2) by recognizing that the last term of 
equation (2) will dominate at large R as a Euclidean (k=0) universe expands. The first term of 
equation (2) dominates at early times, first as a radiation pressure causing a rapid expansion, then 
as an attractive term due to gravity as the matter density dominates over the radiation density. 
However, the density will fall off as volume expands (as 1/R3), so the first term falls off as 1/R 
when matter density dominates. The last term, the cosmological term, increases as R2 as the 
universe expands, so will eventually dominate over all other terms. This becomes a de Sitter 
universe (1917) with the density parameter Ωm = 0, and the dimensionless lambda parameter λ = 
1, so the deceleration parameter qo = Ωm/2 – λ =  -1 (indicating an acceleration instead of 
deceleration), and therefore [see Rowan-Robinson (2004)]: 
 
  Λ = Ho

2 (1 – 2qo) = 3Ho
2          (14) 

 
Substituting these assumptions into equation (2) then matches equation (11) and we will again 
calculate an age of the universe near 100 billion years. However, it takes a very long time for the 
cosmological term to dominate, resulting in an overestimate of age, so all terms of equation (2) 
are needed. 
 
Rowan-Robinson (2004) and Berry (1976) used all terms to calculate the evolution of the 
universe, after “recombination” or when the universe became transparent, using equation (2). 
Many different cosmological models and solutions to the age of the universe are discussed; the 
latest analyses estimate an age of ~13.8 billion years, corresponding to an expansion at light 
speed. It should be noted that this approach also does not agree with Hubble’s Law or redshift 
data of galaxies.  
 
Berry (1976) has some nice closed form solutions for the age and radius R of the universe for 
k=0. For Λ > 0, the age is shown in equation (15); however, there is a typographical error in R vs 
t for Λ 
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"  0, corrected below in equation (16) for Λ > 0: 
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where Ro, to, and ρo refer to current conditions, which are currently believed to be 4.2 Gpc, 13.8 
Gyrs, and ~3x10-30 g/cc including dark matter (Ωm~0.3), converted of course to consistent units.  
 
Numerical Methods 
 
Setting R = Ro in equation (15) gives the age of the observable universe, dependent only on 
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density ρo and Λ, which in turn is dependent on Ωm and Hubble’s constant for k = 0. Solving 
equation (2) numerically then predicts the universe’s expansion R vs time t. Figure 1 shows the 
expansion vs time for k=0, Ho = 72, Ωm = 0.3, λ = 0.7, and qo = -0.55; however, if the current 
radius Ro = 14.4 Gpc, as some believe, the actual age would be 32 billion years. Changing Ho to 
68 with Ωm = 0.3 changes the age to 13.8 Gyrs for R = 4.2 Gpc.. 
 

 
Figure 1. The Universe Expansion vs Time for Ho = 72 and Ωm = 0.3 

 
Backing out H from Figure 1, starting from Ro = 4.2 Gpc and going backwards, with  
D = 4.2 – R, gives unreasonable values for Hubble’s constant as shown in Figure 2. This goes 
out to verified distances, but does not take into account different definitions of distance given in 
general relativity, such as proper vs co-moving distances. 

 
Figure 2. Retrieved H Does Not Match an Input Ho = 72 for Ωm = 0.3 and Ro = 4.2 Gpc 
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A reasonable match to Ho can be obtained by reducing the percent of observable and dark matter 
to lower values. For example, Figure 3 shows the universe’s expansion changing Ωm to 0.011, 
which implies λ = 0.99 and qo = -0.98. A close match to the input Ho is shown in Figure 4. The 
observable universe age is now 27 billion years and it takes 44 billion years to expand to 14.4 
Gpc. An even closer match to the input Ho can be realized for Ro = 14.4 Gpc. Additionally, the 
expansion speed stays below light speed after the first 0.1 billion years since the Big Bang. 
 

 
Figure 3. The Universe Expansion vs Time for Ho = 72 and Ωm = 0.011 

 

 
Figure 4. A Retrieved H is Reasonable for an Input Ho = 72, Ωm = 0.011 and Ho = 4.2 Gpc 

 
For the currently estimated observed mass fraction of ~4%, excluding dark matter, a larger 
universe radius is required to back out a reasonable H. If the current radius is really 14.4 Gpc, 
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then the age is ~37 billion yrs as shown in Figure 5, and the Hubble Space Telescope (HST) has 
only looked back in time a fraction to the beginning of the Big Bang. In this case, for Ωm = 
0.044, we are able to retrieve very reasonable H ~70 values versus confirmed distances (about 
3000 Mpc from us), D = 14.4 - R, as shown in Figure 6. The expansion drops below light speed 
after 0.5 Gyrs from the Big Bang. Dark matter is not needed although it would not resolve the 
missing mass problem with galactic rotation curves.  

 
Figure 5. The Universe Expansion vs Time for Ho = 72 and Ωm = 0.044 

 
Figure 6. A Retrieved H is Good for an Input Ho = 72, Ωm = 0.044, and Ro = 14.4 Gpc 

 
Distances in Special Relativity and General Relativity 
 
At galaxy distances out to where the HST can spatially resolve galaxy features, the special 
relativity distances obtained using Hubble’s law and general relativity distances computed using 
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Ho, Ωm, and λ for a Euclidean (k=0) universe are very similar. Distances obtained by any of these 
measures are within a couple percent of each other out to the Coma cluster of galaxies, as shown 
in Figure 7 as a function of redshift z. By z=0.1, general relativity distances are within 7% of the 
special relativity distances, excepting proper distance which is within 12% [co-moving distance 
multiplied by the scale factor, 1/(1+z)]. Hubble (1929) used obsolete redshift and distance data 
out to NGC4486 (M87) to infer that extragalactic distances were approximately proportional to 
radial velocity. M87 is now known to be a giant elliptical galaxy at a distance of ~53 million 
light years (~16 Mpc), visible as a fuzzy spot in amateur telescopes, in the Virgo cluster of 
galaxies. M87 has a supermassive black hole, first observed using radio telescopes.  
 

 
Figure 7. Distance Measures at Lower Redshifts 

 
However, at larger redshifts, distances to galaxies become nebulous! As shown in Figure 8, 
special relativity (SR) distance levels out at around 4100 Mpc (13.4 billion light years) for an Ho 
= 72 km/s/Mpc. Assuming a mass fraction of 0.3 and energy content of 0.7, the general relativity 
(GR) co-moving distance approaches 13.3 Gpc (~43 billion light years) for Ho = 72 km/s/Mpc 
and Ωm = 0.3 in a Euclidean universe. Slight changes in these values can result in a co-moving 
distance of 14.4 Gpc (~47 billion light years) which some say is the current radius of the 
universe allowing for continued expansion to the current day. The luminosity distances, which 
are used to back out distances from high redshift objects, go off scale and appear unrealistic.  
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Therefore, astronomers typically plot luminosity distance modulus, m-M, in terms of redshift 
only, or 1/(1+z), at high redshifts. The apparent magnitude is m and the absolute (intrinsic) 
magnitude is M. There is some uncertainty in calculating M from optically observable m, due to 
extinction (absorption and scattering) effects and k factors for spectral distribution shifts vs 
redshift, as well as errors in Type Ia supernova characteristics. In deducing an “accelerating” 
universe, Reiss et.al. (1998) analyzed Type Ia supernovae in galaxies from z=0.16 to 0.97. At 
z=1, the luminosity distance is ~2.6X higher than the special relativity distance. The HST and the 
Webb telescopes have now observed galaxies with z>10. 
 
 

Figure 8. Distance Measures at High Redshifts 
 
Conclusions 
 
The currently estimated fraction of observable and dark matter may be too high. In order to back 
out reasonable values of Hubble’s “constant” from Friedmann equation calculations, for Ro = 4.2 
Gpc, the observable universe age may be greater than 28 billion years but Ωm could only be 
approximately one percent. If the universe’s radius is currently 14.4 Gpc, reasonable Hubble 
“constant” values are backed out with a Ωm of ~4%, and the universe age would become ~37 
billion years since the Big Bang. If the CMB is not from the Big Bang, then the expansion ratio 
of ~1100 could be much larger, and the size and age of our universe could be much greater. 
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Appendix A. Redundant Derivation of the “2nd” Friedmann Equation to Predict Age 
 
If one subtracts the 2nd Friedmann equation from the 1st , the universe’s acceleration rate can be 
determined, as best shown by Rowan-Robinson (2004): 
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Note that the left hand side of the equation is essentially the acceleration of the universe, and that 
the first term on the right hand side of the equation can be interpreted as a deceleration term that 
could cause a gravitational collapse, and the last term can lead to deceleration or acceleration of 
the universe depending on the value of the cosmological constant, as noted by Swihart (1968). 
As a side note, this equation appears illogical, as the pressure term (which should contribute to 
an expansion) and the density term (which should contribute to a gravitational collapse) have the 
same sign. The pressure term can also be interpreted as an equivalent radiation density, where 
radiation pressure causes an initial rapid expansion and later represents an equivalent radiation 
density.  
 
The cosmological constant, 
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", is a term added by Einstein (1917) to create a static universe, the 
predominant thinking at the time, by setting 

! 

" = 4πρG prior to the work of Hubble (1929). 
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One can substitute an equivalent radiation density for the pressure term, ρ = ρr + ρm, and then 
rewrite equation (A-1) as: 
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where ρ now includes radiation, visible matter and dark matter. Assuming conservation of 
equivalent mass: 
 
 ρR3 = ρoRo

3              (A-3) 
 
where the subscript refers to current conditions, we can rewrite equation (A-2) as: 
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Multiplying both sides by dR/dt and integrating with respect to t: 
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which becomes using 
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 and noting the change in sign: 
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then integrating and substituting equation (A-3) again: 
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This assumes Λ is a constant, and it is obvious that equation (2) follows. 
 
Appendix B. Some Comments on Current Beliefs 
 
Cosmologists generally believe that there was no explosion associated with the “Big Bang” and 
that we are observing the expansion of space itself. I disagree [Spieth (2017)]. Early 
temperatures and pressures predicted by the same Friedmann equations are consistent with a 
thermonuclear fusion explosion that would cause a rapid expansion of matter. The reason that we 
cannot see the origin of this explosion is because it has long ago subsided, and light emissions 
from it would overtake galaxies and be lost in space. Because almost all galaxies are expanding 
away from us implies that they were once all together; however, extrapolating this back to a 
point singularity is unreasonable, as pressure forces would prevent such early densities. General 
relativity does not have all the physics needed to describe the early expansion of the universe – it 
does not include electromagnetic nor nuclear fusion effects, and perhaps other effects.  
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The CMB appears from all directions, not from a single point in space. Tolman (1934) showed 
that a blackbody will preserve its blackbody characteristics at a lower temperature when 
redshifted (frequency shift), but did not prove it will radiate from all directions.  I believe the 
CMB was pre-existing prior to the Big Bang, not redshifted light from the Big Bang.  
 
An expanding gas will cool, and re-radiate at discrete wavelengths (not as a blackbody) based on 
its temperature and composition. Hence, if the CMB is not from the Big Bang, we are not 
constrained to an expansion ratio of ~1100 since the observable universe became transparent, 
and the age of our observable universe could be much greater.  
 
Hubble’s empirical law already implied an accelerating universe, which appears to be 
accelerating slightly faster than a = H2R (by differentiating v = HR) based upon work by Riess 
and Perlmutter. The Einstein and Friedmann equations include pressure, gravity, and a fictitious 
cosmological constant also referred to as dark energy, but no electromagnetic forces that are 
known to exist in the universe. Spieth (2017) showed that Hubble’s law, and hence an 
accelerating universe, can be derived assuming a pre-existing charged particle universe that 
generate electrical forces, into which galaxies with similar charges expand. This would replace 
the cosmological term. The charge requirements are miniscule and will be difficult to measure. 
Additionally, it would be naïve to assume there was no matter or energy prior to the Big Bang.  
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