

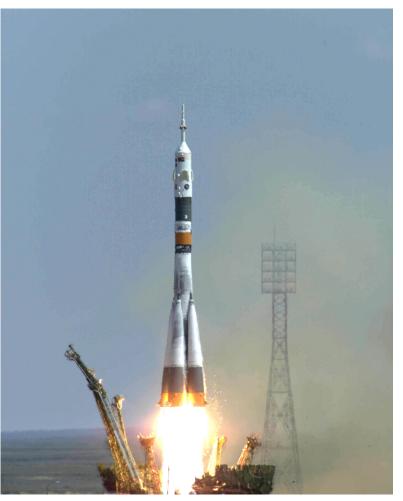
Rockets & Missiles - the Big Ones

Dean Spieth

Seminar 2024

Brief History of the Big Rockets

- Big Rockets Started Flying in the Late 1950s
 - Russian R7 ICBM using Liquid Oxygen (LOX)/Kerosene
 - Sputnik and first men in orbit
- Cryogenic Propellants are Used Today for Satellite and NASA Launches
 - LOX/RP1 (Kerosene), LOX is cryogenic
 - 1st stages of Atlas, Delta I,II,III; Titan I; Saturn V 1st stage; Space X Falcon
 - LOX/LH2 (hydrogen) gives the best performance (more expensive)
 - Saturn V moon rocket upper stages, Shuttle main engines, Delta IV
- Storable Propellants (not cryogenic) are Needed for Ballistic Missiles
 - Liquids: Titan II (retired), Russian SS-18,-19,-N18,-N23, RS-28 Sarmat
 - Solids are lowest cost and lower performance: MMIII, Trident, SS-25,-27
- Chemical Rockets are Currently the Only Solution for Booster Stages
 - High flowrate and high specific impulse ISP (thrust per flowrate)
 - Thrust (lbf) = Flowrate (lbm/second) x ISP



Russian R7 - the 1st Big Rocket

- LOX/Kerosene Propellants
- Launched Sputnik and 1st men to space

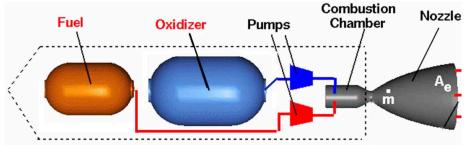
R7 Rocket Engine Cluster

Soyuz 1

RP-1 Bipropellant Rocket Engines

- "Dirty" Propellants, Like the hydrocarbon RP-1 ("Kerosene"), Produce Bright Visible Plumes and More Intense Infrared Signals. LOX is oxidizer.
- Brightness is Due to Hot Sub-micron Carbon Particulates (Carbon soot)

Atlas V 401 First Stage (LOX/RP-1)



Apollo 17 First Stage (LOX/RP-1)

Booster Rocket Types

- Liquid Bipropellant Engines (typically with fuel rich nozzle film cooling)
 - Cryogenic, e.g. LOX (Atlas, Delta, Saturn, etc.)
 - Storable, e.g. NTO/AZ-50 (Titan II)

- Solid Rocket Motors
 - Aluminized (Many large missiles use ammonium perchlorate, aluminum, and binders, considered a Composite Propellant)
 - Other Composite Propellants (e.g., HMX or RDX)
 - Double Base (Nitrocellulose, nitroglycerin, and additives)

Cryogenic Bipropellant Rocket Engines

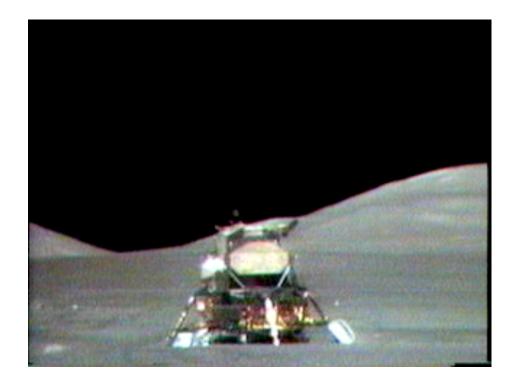
- Delta IV Launches
- Cleanest Burning Propellant is LOX/LH₂
- Primary Byproduct is $H_2O Steam!$

High Altitude Rocket Plumes

- Plumes Expand Dramatically at Higher Altitudes due to Low Ambient Pressures
- Apollo 11 Staging, Stage I (LOX/RP-1), Stage II (LOX/LH₂)
 - -1^{st} men to land on the moon, July 1969

Storable Bipropellant Rocket Engines

- Storable Propellants are Needed for Ballistic Missiles
- Titan II Missiles Deployed in 1960s-1980s had largest US warhead 9 MT
- Clean Burning Propellants Like NTO/AZ-50 Produce Little Visible Signal
- However, Short-Wave & Mid-Wave Infrared Signals are Intense

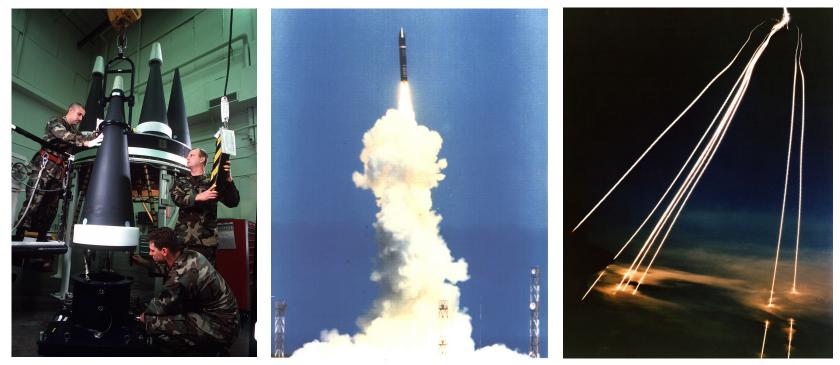


Storable Bipropellant Rocket Plumes in Vacuum

- In the Vacuum of Space, Clean Burning Propellants Produce Minimal Visible Signal
- Apollo 17 Lunar Module, $N_2O_4/AZ-50$
- AZ-50 is a 50-50 blend (see MIL-PRF-27402):
 - Hydrazine [N₂H₄]
 - $\text{ UDMH } [(CH_3)_2N_2H_2]$

Minuteman Launch from Vandenberg AFB

- Storable Solid Propellants Offer Reduced Cost but with Decreased Performance and Warhead Size, partially offset using 3 stages
- Minuteman, an Aluminized Solid Propellant, Fires out of the Hole
- MMIII originally used a post-boost vehicle (PBV) with 3 warheads



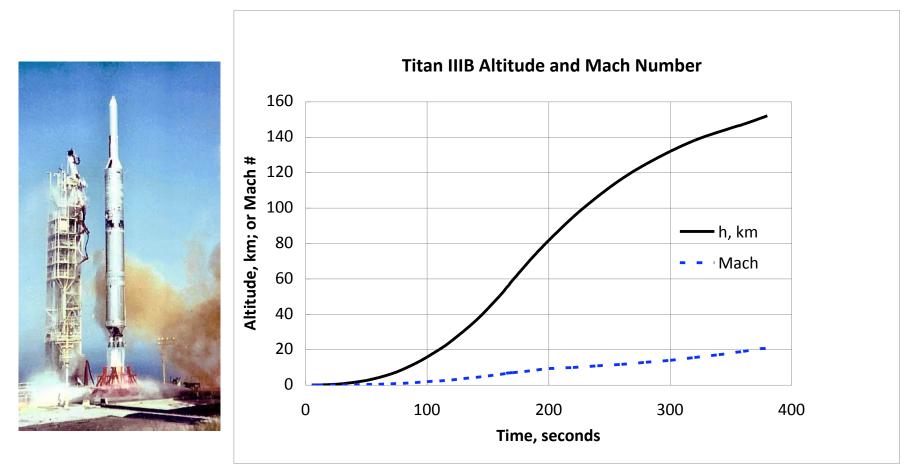
Aluminized Solid Rocket Motors (SRM)

- Peacekeeper (MX missile) used Gas Ejection from a Silo, Then Ignited
- Visible Signal Dominated by Aluminum Oxide Particulates
- 50 Deployed around Warren AFB, Wyoming, then Negotiated Away
- 10 RVs, Unclassified Sources Estimated Yield from 300 to 475 kT each RV

Liquid + Solid Rocket Boosters

- The Space Shuttle
 - Last launch 2011
- Titan IV; IIIC, D, E
 Last launch 2005
- ESA's Ariane V

Rocket Performance


- Velocity gain of each stage, $\Delta v = g_c ISP \ln (m_i/m_{bo})$ gravity drag
- ISP = Thrust/Flowrate = $lb_{f'}(lb_{m}/s)$ = "seconds" = $kg_{f'}(kg/s)$
- Cryogenic propellants give highest ISP, but T = -297F (LOX); -423F (LH₂)
- Solid propellants give much lower ISP

Propellant	ISP (SL or Altitude Avg)	ISP (Vac)
LOX/LH ₂	365 s (SL), Delta IV Stg I,	460 s, Delta IV Stg II
LOX/RP-1	311 s (SL), Atlas V Stg I	330 s, SL-4 Soyuz, Stg II 340 s, Falcon 9 Merlin
NTO/AZ-50	300 s (Alt), Titan IIIC28 Stg I	317 s, Titan IIIC28 Stg II
Aluminized Solid (Composite)	265 s (Alt), Titan III Stg 0	294 s, IUS motor for Chandra X-ray Observatory

Titan IIIB Altitude & Speed

- After Stage I/II Burns, Speed was Mach 20 at ~160 km (100 miles) Altitude
- Stage II Ignition at 167 seconds after Launch

Rocket Exhaust Products

• Note that Water and Carbon Dioxide are Common Products

Propellant	Exhaust Species	Notes	
LOX/LH ₂ Liquid (HO)	H ₂ O, H ₂ , OH, O ₂ + minor species	Cleanest Burning, and no Carbon Dioxide	
NTO/Amine Liquid (CHNO)	H ₂ O, CO ₂ , H ₂ , CO, NO, N ₂ , OH, O ₂ + minor species	Clean Burning	
LOX/RP-1 Liquid (CHO)	Carbon Soot, H_2O , CO ₂ , H_2 , CO, OH, O ₂ + minor species	Visibly Bright, Dirty Exhaust	
Aluminized Solid Composite	Al ₂ O ₃ , H ₂ O, CO ₂ , H ₂ , CO, HCl	Dirty, Visibly Bright, Aluminum oxide	
Double Base Solid (NC/NG)	H ₂ O, CO ₂ , H ₂ , CO, NO, N ₂ , OH, O ₂ + minor species	No Primary Smoke, i.e., no Al ₂ O ₃	

Chemical Composition of Exhaust Products

• Liquid vs Solid Propellant Predicted Species at Nozzle Exit, Finite Rate Chemistry

	Titan II Stage I Storable Biprop	Titan 34D Stage 0 Aluminized Solid	
Propellant	NTO/AZ-50	AP/Al/PBAN/misc	AP=NH ₄ ClO ₄
$(O/F)_{w}$	2.0	67.5/16.1/10.3/6.1%	PBAN=CH _{1.43} N _{0.032} O _{0.036}
Nozzle Expansion Ratio	8.0	8.0	
Exit Temperature, K	1944	2019	
Species	Mole Fractions	Mole Fractions	
H ₂ O	0.467	0.106	May form vapor trail
CO ₂	0.0901	0.0177	
СО	0.0356	0.257	Afterburns to CO ₂
H ₂	0.0377	0.320	Afterburns to H ₂ O
N ₂	0.356	0.0772	
NO	0.0087	0.00025	
ОН	0.0033	0.001	
$Al_2O_3(s)$	0	0.0734	Continuum Emission
HCl	0	0.136	
Other			

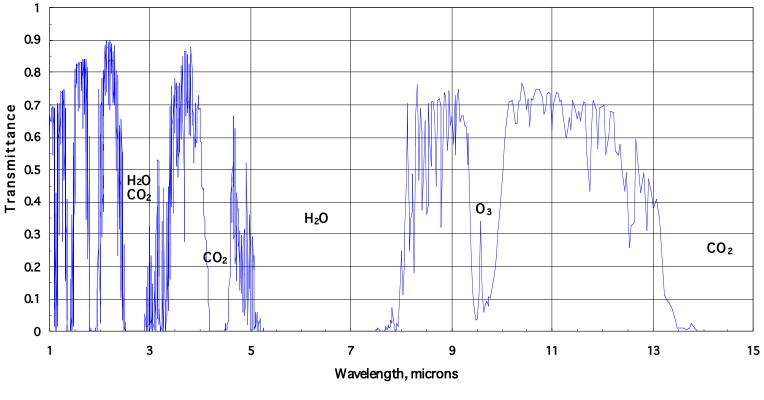
START Treaties Reductions

- Russia ICBMs (Land Based) per NASIC 2017 & 2020 unclassified reports
 - About 50 SS-18, up to 10 warheads each missile (Bull Atomic Sci est 40)
 - About 50 SS-19, up to 6 warheads each (est 6 with Avangard)
 - About 100 SS-25 Solids, 1 warhead (2022 Bull Atomic Sci est 9)
 - About 130 SS-27 Solids, up to 3 warheads (est 233 silo & mobile)
- Russian SLBMs (Submarines) per NASIC 2017 & 2020 unclassified reports
 - About 100 reduced to 16 SS-N-18, up to 3 warheads each (est 0)
 - About 100 reduced to 96 SS-N-23, up to 4 warheads each (est 80)
 - About 70 reduced to 48 SS-N-32 Solids, up to 6 warheads each (est 80)
- US ICBMs
 - About 400 Minuteman III Solids, reduced from 3 to 1 warheads each
- United States SLBMs
 - About 240+ Trident II Solids, 4 to 8 warheads each

New START treaty (2011) limits Ballistic Missile + nuclear bomber numbers to 700 each side (540 Russian vs 659 US*), additional 100 not deployed, and 1550 deployed nuclear warheads (1549 vs 1420*). *9/1/2022 Dept of State 17

ICBM/SLBMs of the 1970s and Earlier

- DSP and MiDAS Satellites Detected Many of these Missile Launches
- Note the Large Size of the SS-6, SS-7, Titans, SS-9, and SS-18 ICBMs
- Solid Motor ICBMs Generally Have Three Stages to Compensate for their Lower Performance as Compared to Liquid Engine ICBMs
- Note the Smaller Size of the SLBMs (short to medium range)

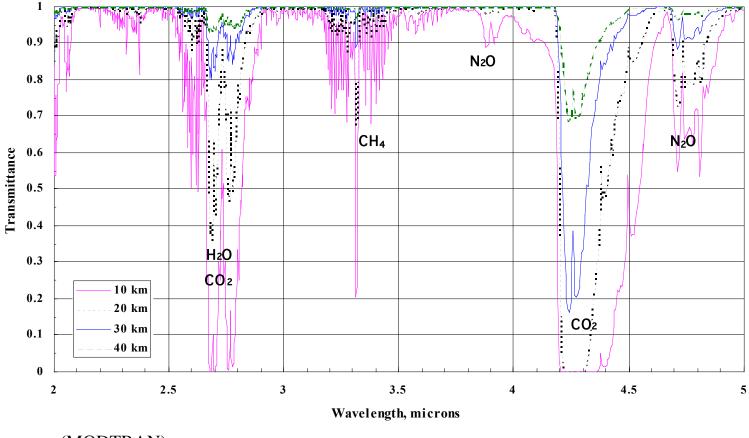


Ref: Gunston (1979), The Illustrated Encyclopedia of the World's Rockets & Missiles, Crescent Books.

Atmospheric Transmission from Sea Level to Space

- Atmospheric Absorption is Strong from Sea Level in Major Plume Emission Bands
- However, There are Many Atmospheric Windows, as well as the 8-13 micron window

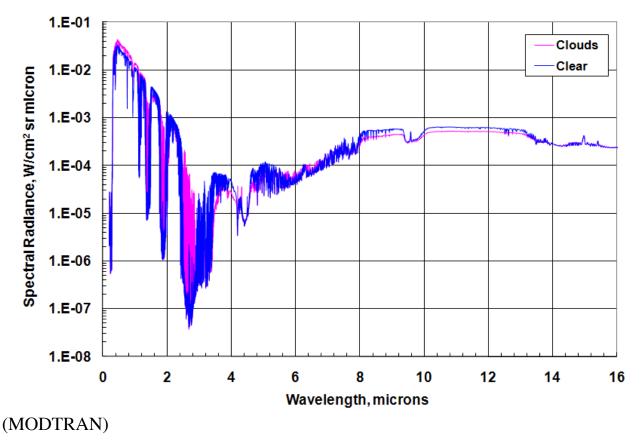
Transmittance to Space from Sea Level, 68 deg zenith angle


(MODTRAN)

19

Atmospheric Transmission from Altitude to Space

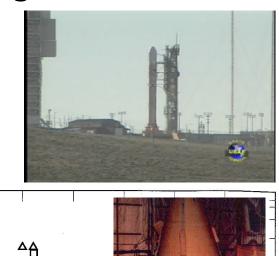
- Major Plume Emission Regions Still Correspond to Atmospheric Absorption Bands
- However, Atmospheric Absorption Decreases with Altitude

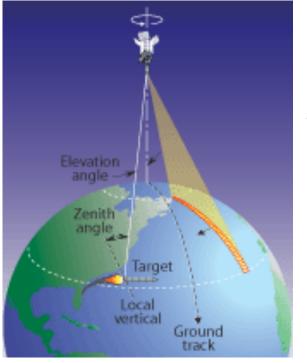


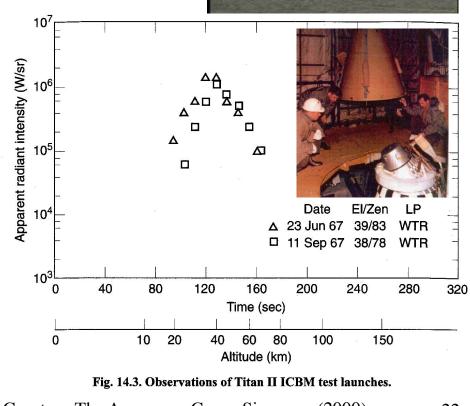
Transmittance to Space, 68 deg zenith angle

Daytime Earth Backgrounds from Space

- Clouds Increase Backgrounds and Clutter at Shorter Wavelengths
- Minimum Background Radiance in 2.7 Micron Water/Carbon Dioxide Band
- Low Clutter Backgrounds for Uniformly Mixed Gases, e.g., in 2.7, 4.3 and 15 μ CO₂ Bands

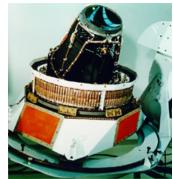



Earth's Spectral Radiance 60 deg Lat to GEO

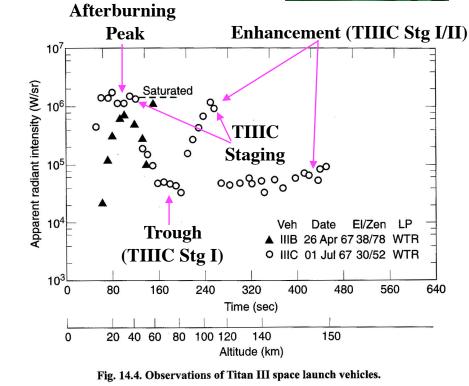


Titan II SWIR MiDAS Signatures

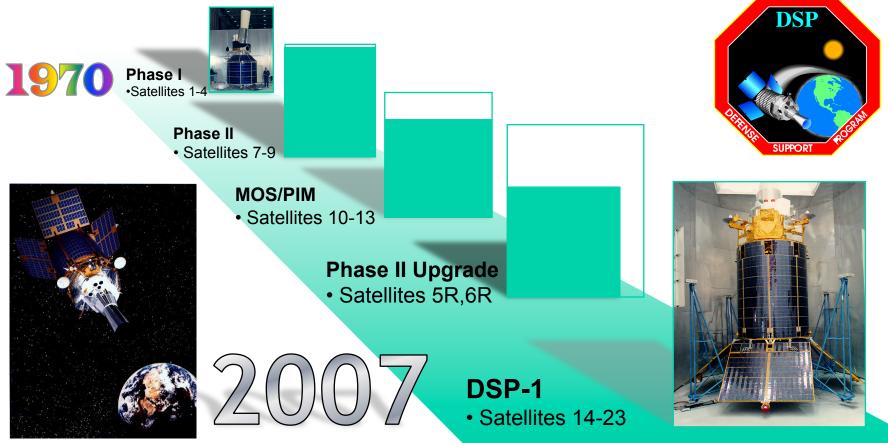
- Program 461 Rocket Signatures (Declassified in 1999 from 1960s)
- Apparent Target Radiant Intensity vs Time after Launch
- Polar Orbit, 2000 nmi Altitude
- Bandpass 2.65 2.80 microns


Courtesy The Aerospace Corp., Simmons (2000)

22

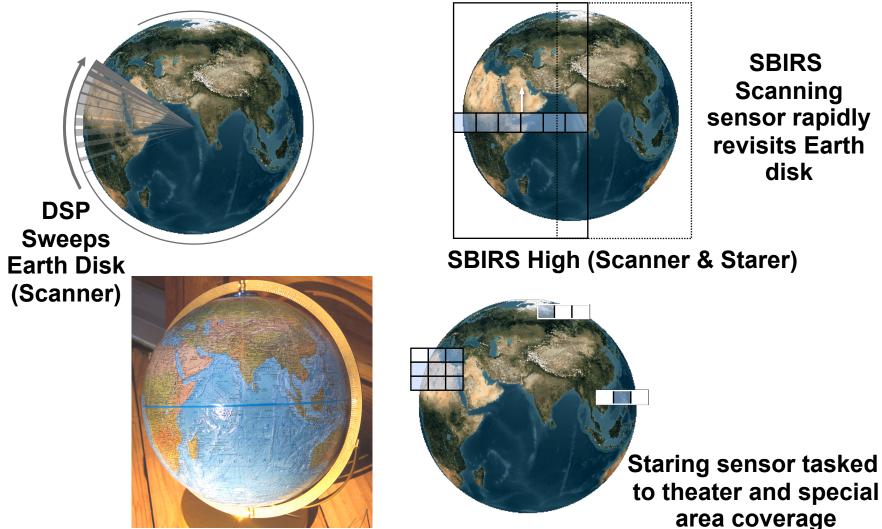

Titan III SWIR MiDAS Signatures

- Program 461 Data (1967)
- Titan IIIB Similar to Titan II NTO/AZ-50 Two Stages
- Titan IIIC Added Stage 0 Strap On SRBs
 - Enhancement Radiation >90 km
 - Staging Events



Courtesy The Aerospace Corp., Simmons (2000) 23

Defense Support Program 37 Years of Success -- A Solid Foundation


- A legacy of successful support to the National Command Authority
- Provides integrated tactical warning attack assessment

Courtesy USAF, SBIRS Briefing, 2001, Cleared for Public Release, updated thru 2007

DSP/SBIRS Sensor Coverage Comparison

Courtesy USAF, SBIRS Briefing, 2001, Cleared for Public Release, added globe to show GEO view 25

Overview of Missile Plume Missions

- Early Warning & Missile Typing
 - MiDAS (461), DSP (647), SBIRS, NextGen
 - Initially one bandpass (SWIR), expanded to two (SWIR & MWIR)
 - Generally low spatial and temporal resolution
 - Covers most of the Earth every <10 seconds above cloud deck
- Impact Point Determination
 - Difficult low signal levels in post boost phase (verniers, bus engines)
 - Need high spatial & temporal resolution
- Missile Defense
 - Hit-to-kill interceptors (non-nuclear), plume sensor self-interference
 - Handover from plume to hardbody for directed energy systems (SDI)
 - Requirements for high spatial & temporal resolution
- Technical Intelligence
 - High temporal resolution, multiple wavelengths
- Missile ID at Launch
 - High temporal resolution needed, possibly multiple wavelengths that see to ground
 - Optical sensors not useful with cloud cover
 - Heading and Number of Stages Unknown at Liftoff
- Battlespace Characterization
 - Wider Bandpasses to "See to Ground"
 - Higher spatial & temporal resolution

Summary

- Infrared Signals are Intense
 - SWIR/MWIR for Early Warning
- Scanners are Still the Choice for Wide Area Surveillance; however, when 10k x 10k IR arrays become Available, Starers will Enable Giant Leaps in Surveillance Sensitivity but may become laser susceptible
- Follow the Water (& Carbon Dioxide)!

A Few References

- G. Sutton (2000), Rocket Propulsion Elements, 7th edition, Wiley & Sons.
- Podvig (2001), Russian Strategic Nuclear Forces, MIT Press.
- NASIC (2017), Ballistic and Cruise Missile Threat, NASIC-1031-0985-17, June 2017, NASIC public affairs office.
- Photos courtesy of the Air Force and NASA.
- F.S. Simmons (2000), The Aerospace Corporation, Rocket Exhaust Plume Technology, AIAA.